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Abstract

Clinical management of chronic diseases requires periodic evaluations. Subjects tran-
sition between various levels of severity of a disease over time, one of which may trigger
an intervention that requires treatment. For example, in diabetic retinopathy, patients
with type 1 diabetes are evaluated yearly for either the onset of proliferative diabetic
retinopathy (PDR) or clinically significant macular edema (CSME) that would require
immediate treatment to preserve vision. Herein we investigate methods for the selection
of personalized cost-effective screening schedules and compare them with a fixed visit
schedule (e.g. annually) in terms of both cost and performance. The approach is illus-
trated using the progression of retinopathy in the DCCT/EDIC study.Optimal screening
schedule; Markov models; undetected time; diabetic retinopathy.

1 Introduction

Periodic evaluations are common in the management of chronic diseases, and informed eval-
uation of their frequency is of interest. For example, the current guidelines for screening for
retinopathy in type 1 diabetes (T1D) recommend yearly visits. The Diabetes Control and
Complications Trial (DCCT) and its follow-up Epidemiology of Diabetes Interventions and
Complications (EDIC) provide a unique opportunity to re-evaluate this recommendation in a
well characterized cohort with available fundus photography for over thirty years [1, 4].

The health status at each visit is typically categorized into one of several possible states.
For example, diabetic retinopathy status is assessed on the ETDRS scale [5], which is an
ordered scale. Based on this, five clinically meaningful retinopathy states can be defined: 1)
no diabetic retinopathy (DR) and no clinically significant macular edema (CSME); 2) mild
non-proliferative diabetic retinopathy (MiNPDR) and no CSME; 3) moderate non-proliferative
diabetic retinopathy (MoNPDR) and no CSME; 4) severe proliferative diabetic retinopathy
(SNPDR) and no CSME; and 5) proliferative diabetic retinopathy (PDR) or CSME, either
of which requires treatment to preserve vision. Thus, State 5 (PDR/CSME) is the state that
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triggers clinical intervention, and is considered as an absorbing state in the Markov models
employed herein. Also note that a subject cannot jump from state 1 (no DR) to state 3
(MoNPDR) without first going through state 2 (MiNPDR). It is important to note that the
health status is observed only at the scheduled visits, and therefore the exact transition times
are unknown. Moreover, a subject can either progress from state 2 to state 3 or regress to
state 1. To account for these possible transitions, a Markov model in continuous time [2, 7]
can be employed to estimate the cumulative incidence functions for each state, and to then
focus on transitions to the absorbing state, at which point interventions are required.

Multi-state Markov models have been employed to identify risk factors for diabetic retinopa-
thy [9, 10]. Fixed schedules (e.g., annual visits) have also been considered [3]. However, our
goal is to take this one step further and to provide rational examination schedules based on
the patient’s risk profile.

Herein screening schedules are compared in terms of two cost components of particular
interest in this context. The first is the undetected time, defined as the elapsed time from
the actual onset of progression (assumed to occur in continuous time) and the next visit at
which it is detected. The less frequent the visits, the longer progression will go undetected and
the harder or more costly it may be to treat when finally detected. The second component
is the number of visits or screening examinations up to and including when the progression
is detected. The more frequent the visit schedule, the greater the number of negative visits
before progression is detected.

The goal is to introduce a screening schedule that minimizes both the undetected time
and the number or frequency of examinations, and the associated costs, and at the same
time is practical and easy to explain. Both fixed screening schedules (e.g. annual visits)
and personalized screening schedules based on the current health state are investigated and
illustrated using the progression of retinopathy in the DCCT/EDIC study.

2 The Model

Let S = {u1, . . . um} be the set of all health states, where m is the number of states (m ≥ 2).
A subject is followed over time, and at each time point can be in any of the m health states.
Denote by X(t) the state of the subject at time t, t ≥ 0. The transition probability matrix
P (s, t) with entries

puv(s, t) = P (X(t) = v|P (X(s) = u) ,

can be defined in terms of the transition intensity matrix Q(t) with elements

quv(t) = lim∆t→0puv(t, t+ ∆t)/∆t , u 6= v.

Then P (s, t) andQ(t) are related by the Kolmogorov differential equations (forward/backward)
[2]. A homogeneous Markov process (i.e., puv(s, t) = puv(t − s) or constant intensities {quv})
is employed,

P (∆t) = exp{Q ·∆t} , (1)

with elements puv(∆t), u, v ∈ S.
The state requiring the intervention is denoted by u∗ and it is assumed absorbing (i.e.,

qu∗v = 0, for all v ∈ S).
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The focus is on the time to the absorbing state, in other words to estimate the cumulative
distribution function for time from state u to state u∗, denoted by Fu (u ∈ S, u 6= u∗). A
closed form expression for Fu is available for homogeneous Markov processes. Briefly, using
the spectral decomposition of the intensity matrix Q,

Q = L ·D ·R ,

where R = L−1 and D is a diagonal matrix with elements λi, then one has

Fu(t) =
∑
v 6=u∗

fuv · eλv ·t , (2)

where fuv = Luv ·Rvu∗ .
The intensity matrix of the Markov model can incorporate covariates, and their effect is

expressed as hazard ratios,
quv(X) = q0

uv · exp(β′uv ·X) ,

where X denotes the covariates, and βuv the corresponding hazard ratios. This can be taken
into account for developing personalized screening schedules.

All parameters are estimated by maximizing the likelihood [8].
Let L denote the time horizon, say L = 20 years. The total cost over this follow-up period

is based on the number of visits Nv, and the undetected time TU . With cv denoting the cost of
each visit, and cu the cost of one unit (e.g., year) of undetected time, the expected total cost
becomes:

E(C) = cv · E(Nv) + cu · E(TU).

When comparing two screening schedules, one is preferable if it performs better (i.e., lower
TU) and is less costly (i.e., lower E(C)).

3 Fixed Visit Schedules

Consider the case of a single sub-clinical state not requiring treatment that can lead to pro-
gression to a clinical state requiring treatment. Let F denote the cdf of T , the time from the
sub-clinical state to the clinical state. A screening schedule, denoted by τ = (τk)k=1,...K is a
partition of the interval [0, L], so that 0 = τ1 < . . . < τK = L, where L is the time horizon and
K ≥ 2.

The expected value of the undetected time is

E(TU) =
K−1∑
k=1

∫ τk+1

τk

(τk+1 − t) dF (t)

=
K−1∑
k=1

τk+1 · [F (τk+1)− F (τk)]−
∫ L

0

t dF (t) . (3)

One can see that, for a different partition ξ = (ξj)j=1,...J of the interval [0, T ] (0 = ξ1 < . . . <
ξJ = L, the difference in undetected time between the two visit schedules is

E(TU(τ))− E(TU(ξ)) = τ ′2:K ·∆F (τ)− ξ′2:K ·∆F (ξ) , (4)
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where τ2:K = (τ2, . . . , τK)′ and ∆F (τ) = (F (τ2)− F (τ1), . . . , F (τK)− F (τK−1))′ (and similar
notations for ξ2:J and ∆F (ξ)).

The expected number of visits before the onset Nv(τ) is

E(Nv(τ)) = 1 +
K−1∑
k=1

k · [F (τk+1)− F (τk)] + (K − 1) · [1− F (L)] , (5)

and therefore

E(Nv(τ)−Nv(ξ)) = (1 : (K − 1))′ ·∆F (τ)− (1 : (J − 1))′ ·∆F (ξ)

+ (K − J) · (1− F (L)) .

The difference in expected costs between two visit schedules τ and ξ is

E(C(τ))− E(C(ξ)) = cv · [E(Nv(τ))− E(Nv(ξ))] + cu · [E(TU(τ))− E(TU(ξ))]

Assuming ξ ⊆ τ , the visit schedule τ is more effective, i.e., E(TU(τ)) ≤ E(TU(ξ)). It is also
less costly iff

cu
cv
≥ E(Nv(τ))− E(Nv(ξ))

E(TU(ξ))− E(TU(τ))
. (6)

4 Personalized Screening Schedules

Two personalized screening approaches are presented. First, given the unit costs cu and cv, a
screening schedule can be obtained as the solution of an optimization problem, illustrated by
minimizing the expected cost. The second approach is to select the time to the next visit such
that the risk of reaching the absorbing state is below an acceptable risk (say 5%).

4.1 Minimal Expected Cost

Assume that at visit k (k ≥ 1), a subject is in state u (u ∈ S), denoted by Xk = u. The
decision regarding the time to the next visit is based on the retinopathy level at the current
visit, namely the state u. The action at visit k is to follow up the patient in a years, denoted
by Ak = a. The probability of the state at the next visit depends on the current state and the
action a,

P (Xk+1 = v|Xk = u, Ak = a) = pu,v(a) ,

where pu,v(a) is defined in (1).
The total cost associated with the action a for a subject in state u is computed first

conditionally on the state v reached after the a years. There are two costs associated with
transitioning from u to v under action a. The first one is the cost per year associated with the
timing of the next visit, namely

C1(a|u, v) =
cv
a
,

which does not depend of the state v. The second type of cost C2(u, v|a) is due to the (expected)
undetected time. Notice that this cost is zero unless the patient is in the absorbing state at
the next visit (i.e., C2(u, v|a) = 0 for v 6= u∗), while

C2(a|u, u∗) = cu ·
∫ a

0

(a− t)dFu(t) ,
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where Fu(·) denotes the cdf of the time to the absorbing state starting from state u.
The total cost of action a when in state u conditional on reaching the state v is

C(a|u, v) =

{
cv
a

+ cu ·
∫ a

0
(a− t)dFu(t) , if v = u∗ (with probability puu∗(a)) ,

cv
a

if v 6= u∗ (with probability 1− puu∗(a)) .

Then, unconditionally over the set of possible states reached, the expected total cost is

C(a|u) =
cv
a

+ cu ·
∫ a

0

(a− t)dFu(t) · pu,u∗(a)

=
cv
a

+ cu ·
∫ a

0

(a− t)dFu(t) · Fu(a) . (7)

Since the time to the next visit is bounded (i.e., a is bounded), there is a value a∗(u)
that minimizes the total cost C(a|u), and the values so obtained define the optimal screening
schedule A∗ = (a∗(1), . . . , a∗(m)). Notice that, for example, one could define the optimal
screening schedule employing a weighted sum of C1 and C2. However, this would lead to a
similar objective function but with different values for cu and cv.

4.2 Limiting Risk of Undetected Time

One difficulty that arises when using the previous approach is the need to specify values for
cv and cu. While the visit cost cv can be readily obtained (e.g., the cost of the ophtalmoscopy
and fundus photography in the retinopathy example), it is rather difficult to elicit values for
the undetected time cost cu. More importantly, while intuitive from a payer’s perspective, it
is less clear how meaningful the previous cost-benefit analysis is to a particular patient who
is more likely interested in a screening schedule that minimizes the undetected time. Thus,
a different approach is to choose the time to the visit such that the probability of reaching
the absorbing state (which requires an intervention) is below a certain cutoff value, deemed as
an acceptable risk (e.g., 5% or 10%). In applications, other considerations (such as practical
constraints) may play a role as well in choosing a certain screening policy.

For each state u, the time to the next visit a(u) is specified, so that the time to the next
visit vector A = (a(u1), . . . , a(um)) defines a screening schedule. This leads to a Markov chain
(in discrete time) X̃ with the same states and with transition matrix P̃ obtained as follows.
Transition probabilities from state u are given by the state probabilities of the Markov process
X after a(u) years starting from state u, or equivalently the u-th row of P (a(u)) (see Eq. (1)),
namely

P̃u,v = pu,v(a(u)) , u, v = u1, . . . , um .

Notice that P̃ further depends on A, but for simplicity this is suppressed in the notation.
As before, two screening schedules A and A′ are compared with respect to expected number of
visits Nv(A) and Nv(A

′) and the undetected times TU(A) and TU(A′). However, the undetected
time is 0 unless the subject reaches the absorbing state at the next visit, and therefore it is
more meaningful for both the patients and the clinicians to estimate the undetected time
conditional on reaching the absorbing state at the next visit.
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Let k (k ≥ 2) denote the visit when this occurred, so X̃k = u∗, and denote by γu the
probability of reaching the absorbing state from state u under regime A. Bayes’ formula gives

γu = P̃ (u, u∗)
/∑

v

P̃ (v, u∗)

= Fu(a(u))
/∑

v

Fv(a(v)) , u, v 6= u∗ .

The expected undetected time conditional on reaching the absorbing state is:

E(TU |Sk = u∗) =
∑
u6=u∗

E(TU |Sk−1 = u, Sk = u∗) · γu , (8)

where

E(TU |Sk−1 = u, Sk = u∗) =
1

Fu(a(u))
·
∫ a(u)

0

(a(u))− t)dFu(t) .

Another measure of interest is the probability that the unobserved time will exceed a
clinically meaningful length of time t∗. A natural choice for the retinopathy example might be
0.5 years, which is the expected unobserved time under annual screening assuming a uniform
distribution. One has:

P (TU > t∗|Sk = u∗) =
∑
u6=u∗

P (TU > t∗|Sk−1 = u, Sk = u∗) · γs

=
∑
u6=u∗

Fu (a(u)− t∗)
Fu(a(u)))

· γu . (9)

The number of visits within a L-year horizon under a specific screening schedule is obtained
using an imbedding approach [6], see Appendix for details, or through simulations under this
Markov model.

5 Illustration: Screening for Retinopathy in DCCT/EDIC

From 1983 to 1989, the DCCT enrolled 1441 participants with type 1 diabetes, and standard
seven-field fundus photographs were obtained every 6 months during DCCT and every fourth
year during EDIC, and in the complete cohort during EDIC years 4 and 10.

The maximum likelihood estimator for the intensity matrix Q is used to estimate the
transition matrix P (t) in (1). The cumulative incidence functions of reaching the absorbing
state (PDR/CSME) are obtained using the eigenvalues and eigenvectors of Q and are depicted
in Figure 1. As expected, these are lower when starting from states 1 and 2 compared to
starting from states 3 and 4.

5.1 Fixed Schedule

For illustration, we compare annual visits versus biennial (every other year) visits. Using (3),
the expected undetected time for annual visits is 0.153 years, while for biennial visits is 0.303
years. Annual screening leads to approximately 18.37 expected visits over 20 years, while for
biennial visits yields approximately 9.76 visits. Using (6), annual visits are less costly than
visits every two years if the ratio cu/cv is 33.86 or higher.
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Figure 1: Incidence functions for PDR/CSME, stratified by the initial state.
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5.2 Personalized Schedule

The first approach is illustrated using cv = 1, and cu = 10, 30. The total costs are computed
using Eq. (7), and are depicted in Figure 2 for various values of the time to the next visit a.
The optimal screening is given by the values that minimize the total cost in Figure 2, namely
(5, 4, 1.5, 1) for cu = 10 and (4.5, 3.5, 1.25, 0.63) for cu = 30. More frequent visits are required
as the severity of the current retinopathy state increases. Furthermore, the larger the ratio
cu/cv, the shorter the optimal time to the next visit.

To illustrate the second approach, first notice (Figure 1) there is less than 5% chance of
reaching PDR or CSME within 4 years when starting from no DR, and less than 5% chance
within 3 years when starting from MiNPDR. One option is then to schedule the next visit in
4 years for a subject with no retinopathy, in 3 years for a subject with mild retinopathy, and
(as per current guidelines) every year for those with MoNPDR or SNPDR, which leads to the
screening schedule A =(4, 3, 1, 1). This schedule will be compared with annual screening.

The conditional probabilities γ’s of reaching the PDR/CSME state under the (4, 3, 1, 1)
screening are given by (0.056, 0.073, 0.238, 0.633), while for annual visits these are (0.002,
0.013, 0.270, 0.715).

The undetected time among those reaching the absorbing state under a (4, 3, 1, 1) screening
schedule is 0.684 years, while for annual visits it is 0.606 years. Since most transitions to the
absorbing state occur when subjects currently have MoNPDR and SNPDR, more frequent
visits from those states will lead to lower TU . For example, a (4, 3, 0.5, 0.25) schedule leads
to an expected undetected time of 0.415 years.

Using (9), there is 67.43% chance the undetected time will exceed 0.5 years for a (4, 3, 1,
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Figure 2: Total cost as a function of the time to the next visit for (cv, cu) = (1, 10) (black line)
and (cv, cu) = (1, 30) (red line), stratified by the current retinopathy state. Note that the axes
differ for each intermediate state to best display the change in costs as the screening interval
changes.
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1) schedule, 65.60% chance for annual screening, but only 18.15% chance for a (4, 3, 0.5, 0.25)
schedule.

The average number of visits with a 20-year horizon for a (4, 3, 1, 1) schedule is 6.73 visits,
for (1, 1, 1, 1) is 18.38, while a (4, 3, 0.5, 0.25) schedule leads to an average of 7.65 visits.

Notice that the (4, 3, 0.5, 0.25) schedule dominates the (1, 1, 1, 1) schedule both in terms
of effectiveness with an expected 0.19 years lower average undetected time, and costs with an
expected 10.7 fewer number of visits over up to 20 years of follow-up.

Given an acceptable probability of progressing to PDR/CSME, the time to the next visit
is determined based on the current retinopathy level such that the probability of reaching
PDR/CSME is below (approximately) that threshold value. For illustration, using 5% as the
acceptable risk, Table 1 presents the time to the next visit based on the current retinopathy
state.

Table 1: Time to next visit (years) as a function of the current state such that the risk of
reaching PDR/CSME is approximately 5%.

Current State Time to Next Visit Probability
No retinopathy 5.250 0.04912

MiNPDR 3.583 0.04847
MoNPDR 0.333 0.04493
SNPDR 0.083 0.05662

5.3 Covariates

The effect of covariates can also be incorporated, and this is illustrated using HbA1c (Table
2).

Table 2: Time to next visit (years) as a function of the current state such that the risk
of reaching PDR/CSME is approximately 5% for various values of HbA1c, along with the
average undetected time TU (years) and the expected number of visits Nv.

HbA1c No retinopathy MiNPDR MoNPDR SNPDR E(TU) E(Nv)
6 14.417 11.917 0.583 0.417 3.056 2.112
8 6.083 4.333 0.417 0.083 1.126 5.779
10 3.167 2.083 0.250 0.083 0.421 14.461

More frequent visits are required for larger values of HbA1c. With a 5% acceptable risk of
reaching the PDR/CSME state, the next visit for a patient with no retinopathy at the current
visit is scheduled in 14.4 years for an HbA1c of 6% and in 3.2 years for an HbA1c of 10%,
while for a patient with SNPDR they are scheduled in 0.42 years for an HbA1c of 6% and in
0.08 years for an HbA1c of 10%.

Other covariates were also considered (gender, age, duration of diabetes, hypertension),
but did not have a significant role in determining a screening schedule.
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6 Discussion

A Markov model in continuous time is employed to describe transitions among health states
over time, with particular interest in the incidence of an absorbing state which requires inter-
vention. The goal is to investigate personalized cost-effective screening schedules. The cost
associated with a given schedule has two components the number of visits and the length of
time between the onset of the treatable condition and the visit when it is actually diagnosed
(the undetected time). A more frequent screening schedule leads to more visits (more costly)
and lower undetected time (less costly).

We first investigated fixed screening schedules (e.g., annual vs. biennial visits), and then
considered tailoring the time to the next visit based on the current health state. The methods
were illustrated using the progression of retinopathy in the DCCT/EDIC cohort, and the pro-
posed approaches compared these personalized screening schedules with the current guidelines
which recommend annual visits. It was shown that having more frequent visits for subjects
at high risk and fewer visits for subjects at low risk leads to cost-effective screening schedules.
In our example, a (4, 3, 0.5, 0.25) schedule for a subject starting in the no retinopathy state
resulted in a 58% reduction in the number of visits compared to annual visits over a 20-year
follow-up, while at the same time reducing the undetected time by 31%. The screening schedule
can also take into account the effect of various risk factors, which is illustrated using HbA1c.

Besides the clinical benefit of early detection of progression, adopting the personalized
screening schedule for retinopathy may lead to important savings. The US population of type
1 diabetes is approximately 1 million. Assume that 10% have already reached the PDR/CSME
state and of the remaining 90%, approximately 25% have no retinopathy, 25% have MiNPDR,
30% MoNPDR, and 20% SNPDR. Assuming $200 per fundus photography, annual visits will
require approximately $2.46B over 20 years, while the (4,3,0.5,0.25) schedule requires $1.39B,
for a saving of $1.07B, or 43%.

In the DCCT/EDIC retinopathy example, the standard therapy for PDR is photocoag-
ulation and for CSME is either photocoagulation or anti-VEGF, the costs of which are well
established. There is no literature, however, on the costs associated with delayed detection and
treatment (the untreated time, cu), or the savings associated with early detection and treat-
ment. Thus, these costs may be more or less fixed, at least over short periods of a few months
that PDR/CSME might go undetected. However, for retinopathy and other conditions, there
could be substantial costs associated with an increase in the period that progression goes unde-
tected. Retinopathy progression doesn’t stop when PDR/CSME occurs. Rather, if untreated
subjects can progress to more severe levels, such as the development of what are termed ”high
risk characteristics” that place a subject at markedly higher risk of blindness. Thus, delayed
detection could increase the costs associated with the initial treatment (e.g., photocoagulation)
owing to a more severe condition upon detection, and could increase the costs associated with
the treatment of a more rapid deterioration in the patient’s condition. Thus, the above models
could be further extended to incorporate temporal and other covariates into the cost function
cu.

The setup considered for determining the optimal screening schedule by minimizing the
expected total cost (Section 4.1) is somewhat similar to a discrete-time Markov decision process
(MDP) with deterministic history-dependent decision rules [12]. However, in the retinopathy
application, the time horizon (L) refers to the time elapsed since the first visit, and therefore
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the number of visits up to and including L is random. In contrast, an MDP with finite time-
horizon typically refers to a fixed (finite) number of transitions, visits in our case. Another
difference is that the ultimate goal is to obtain screening schedules that are meaningful for each
patient, rather than cost-effective from a payer perspective, which is addressed by limiting the
risk of undetected time (Section 4.2).

It should be noted that the calculation of undetected time only depends on the cumulative
distribution of the time to the absorbing state. Therefore the results presented here apply to
non-homogeneous Markov models as well, where the transition probabilities are obtained as
solutions of the nonlinear differential equations corresponding to the Kolmogorov equations
[13].

Other authors have considered the problem of optimal scheduling examinations [14, 11].
Three health states were considered (no disease, pre-clinical state and the clinical state), and
the goal was to determine screening schedules that lead to early detection of disease. Unlike
the retinopathy application considered herein where the status can either improve or worsen
over time, the disease (e.g., cancer) was assumed progressive (i.e., no transitions from the
pre-clinical state to the healthy state), and these methods are not directly applicable to our
problem.

Clinical management of a chronic disease such as diabetes is a complex task requiring
periodic evaluation of various potential complications, such as retinopathy, nephropathy and
neuropathy. It is important to help provide informed guidelines on the screening for these
complications which are tailored to the risk profile of the individual patient. The present
work shows that personalized screenings have the potential to be cost-effective relative to fixed
screenings.

7 Appendix

The number of visits with a time horizon L is obtained by discretizing the problem based on
the smallest interval of time which can be considered between two consecutive visits. In the
retinopathy progression example, these are monthly intervals, and the time scale is changed ac-
cordingly (e.g., L is in months). Since we are interested in the number of visits with an L-year
follow up, we define an imbedded Markov chain which captures information on both the clin-
ical state and the follow up time. Given the clinical states u1, . . . um, where um is the absorbing
state, the imbedded Markov model will have states SI = {u11, . . . u1L, . . . , um−1,1, . . . um−1,L, um1},
where a subject is in state uij if the clinical state is ui (i = 1, . . .m−1) at time j (j = 1, . . . L),
while um1 is the absorbing state of the imbedded state defined as either reaching the absorbing
clinical state um or the follow up time exceeding the time horizon L.

Transitions over time in the imbedded model occur with probabilities obtained based on
the actions a(uij) = a(ui), since the actions only depend on the clinical state. Transitions to
a non-absorbing state (i′ < m) are given by

pIuij ,ui′j′ =

{
pui,ui′(a(ui)) , if j + a(i) ≤ L & j′ = j + a(i)
0 , otherwise ,

(10)

while the transition probability to the absorbing state is

pIuij ,um1
= 1−

∑
i′6=m

∑
j′

pIuij ,ui′j′ . (11)
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The expected number of visits before absorption in the initial Markov model (S, P ) with a time
horizon L is the time to absorption in the imbedded chain with state set SI and transition
probabilities matrix P I with components defined in (10) and (11). It follows that the expected
number of visits within the first L years is given by N · e, where e is a vector of ones and N is
the fundamental matrix of the imbedded chain, with N = (I−T )−1 and T = P I1:(m−1)L,1:(m−1)L

[7].
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