Publication Description
To control the Type I error probability in a group sequential procedure using the logrank test, it is important to know the information times (fractions) at the times of interim analyses conducted for purposes of data monitoring. For the logrank test, the information time at an interim analysis is the fraction of the total number of events to be accrued in the entire trial. In a maximum information trial design, the trial is concluded when a prespecified total number of events has been accrued. For such a design, therefore, the information time at each interim analysis is known. However, many trials are designed to accrue data over a fixed duration of follow-up on a specified number of patients. This is termed a maximum duration trial design. Under such a design, the total number of events to be accrued is unknown at the time of an interim analysis. For a maximum duration trial design, therefore, these information times need to be estimated. A common practice is to assume that a fixed fraction of information will be accrued between any two consecutive interim analyses, and then employ a Pocock or O'Brien-Fleming boundary. In this article, we describe an estimate of the information time based on the fraction of total patient exposure, which tends to be slightly negatively biased (i.e., conservative) if survival is exponentially distributed. We then present a numerical exploration of the robustness of this estimate when nonexponential survival applies. We also show that the Lan-DeMets (1983, Biometrika 70, 659-663) procedure for constructing group sequential boundaries with the desired level of Type I error control can be computed using the estimated information fraction, even though it may be biased. Finally, we discuss the implications of employing a biased estimate of study information for a group sequential procedure.